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STRUCTURAL IDENTIFICATION DURING 
AN EARTHQUAKE 

by 

Jean-Guy Beliveau * 

SYNOPSIS 

Experiments and experience have shown that the behavior of large 
structures is nonlinear with the amplitude of the motion. The interaction 
effects of a flexible foundation also affect the frequency and damping 
characteristics of the structure, primarily in the first mode. For most 
loads acting on civil engineering structures it would be very difficult to 
determine the parameters associated with these phenomena. For earthquake 
loads, however, such information may be obtained from the relatively large 
response. A numerical method is developed to identify these from time 
histories of the free field ground acceleration and the response acceler-
ations of the structure. Simulated ground accelerations and corresponding 
responses in one dimension are considered for motion of a one-story 
building on a rigid foundation and on a flexible foundation. The Fast 
Fourier Transform is used to simulate the acceleration time history. Least 
squares and parametric differentiation are used for the identification. 

INTRODUCTION 

For nuclear power plants and other relatively stiff structures soil-
structure interaction effects can influence the dynamic response of the 
structure, particularly in the lowest and most important mode. This effect 
is not always conservative (8) and is difficult to evaluate without soil 
properties. 

Experimental observations have verified the fact that for tall 
buildings the frequency and damping of the fundamental mode are nonlinear 
with amplitude (7). Although ambient wind excitations can be used to 
obtain foundation parameters,nonlinear effects cannot be determined from 
low-level excitations. In the case of earthquakes, however, the resulting 
motions may be large and the interaction parameters or nonlinear effects 
can be obtained. This is particularly applicable to damping estimates 
which cannot be predicted from low-amplitude tests(5). 

The major objective of system identification in structural dynamics is 
the incorporation of the estimated parameters in a new design or in the 
modification of an existing design. The response must be controlled within 
acceptable levels, and these parameters of the model together with the 
mathematical model are the tools used in this control. 

A method is herein developed and applied to this identification 
problem in which the data are time histories of the free field ground 
acceleration and building response accelerations during an earthquake. 
Parameters for a linear structure on a flexible foundation are obtained in 
an example where classical normal modes do not exist (8). In a second 
application, nonlinear effects are identified for a nonlinear structure on 
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a rigid foundation. 

The data utilized in this study are simulated on a digital computer. 
The Fast Fourier Transform (FFT) algorithm is used to generate an acceler-
ation record (11, 12). The free field ground acceleration is considered as 
a stationary random process with constant spectral density up to a cutoff 
frequency, which is higher than the resonant frequencies of the ground-
structure system. 

The techniques of nonlinear least squares combined with a modified 
Newton-Raphson scheme and parametric differentiation of the equations of 
motion is used to estimate the parameters. Thus analysis is based on the 
actual system rather than an equivalent linear system (4) or an equivalent 
single degree-of-freedom model (10). Analytical representation of the 
solution in terms of the parameters is not required. Furthermore, the 
methods yields an approximate confidence ellipsoid on the parameter esti-
mates. 

Horizontal accelerations of one story building supported at the 
surface of an elastic half-space are considered. Generalizations to other 
models are discussed. 

SIMULATION 

For purposes of verifying the identification method, a simulated 
earthquake acceleration record was generated on a digital computer. In the 
actual identification problem, the researcher would have the free field 
acceleration record and the acceleration time histories of the structure. 
The ground acceleration should be nonstationary (6). Envelope functions 
have been used to modify finite sums of sinusoidal terms (9, 11, 12) in 
order to obtain nonstationary series. 

Through optimization of results of a structure with a natural period 
of three seconds and a damping ratio of two tenths, it was found that a 
time series obtained from a truncated white noise representation matched 
the appearance of, and had similar statistical characteristics as the El 
Centro (1940) earthquake records (3). Stationary time histories with flat 
frequency content have been used in the response study of a stiff structure 
excited by Coulomb friction from a moving foundation (4) and in the 
analysis of a multi-story structures (13). 

The simulation method used herein utilizes the FFT algorithm (12). 
The ground acceleration at the j-th time point is given by 
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and S(wi,) is the one-sided power spectral density at wk
.

k 
are independent 

random phase angles uniformly distributed between 0 and 27T. RANDU of the 
IBM Scientific Subroutine Package is used to generate (1)

IC 

As the goal here is to verify the identification scheme, the time 
series was not rendered nonstationary. The real application of indentifi-
cation should be for actual observed time histories and not simulated 
records. 

IDENTIFICATION BY NONLINEAR LEAST SQUARES IN THE TIME DOMAIN 

Nonlinear Least squares techniques have been used previously to evalu-
ate parameters of a mathematical model from time series responses (1). 
Using this type of data, corrections to estimates of the parameters are 
obtained iteratively until a convergence criteria is satisfied. The 
objective function may be generalized to a likelihood function in the case 
of correlated errors or to a posteriori likelihood function in the case of 
a priori information (1). In this study the errors are uncorrelated and 
there is no a priori information on the initial estimates. Thus for Gaussian 
errors with identical variance these are maximum likelihood estimates. 

The data observed in a one story building is the ground acceleration 
and the total (not relative) acceleration of the roof. Thus for N time 
points the sum of the errors squared between these data and the results of 
a particular model dependent on the parameters is 

E(8) = tE1 ytt (6) - yD  
=  

in which subscript t and D refer to theoretical and data roof acceler-
ations, respectively. The analytical term may be approximated by a Taylor 
series about initial estimates to the parameters. 

Byt 
Yt (8) = Y ) + j  E [6] t o=1 BO.j 

 se 

This is substituted into eqn. [5], and optimisation with respect to the 
k-parameter corrections is performed. There results the equation 
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The quantities are evaluated at the current estimates of the parameters. 

The basic problems in this modified Newton-Raphson scheme are the 
determination of good initial estimates, upon which convergence or diver- 
gence depends, and the calculation of the required partial derivatives. 
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These are discussed in the section on the numerical examples. This method 
yields approximate confidence ellipsoids on the parameters. 

The variance-covariance matrix of the estimates is (1). 

Cov. [6, 6
j
] = a2 B [10] 

in which 

[B] = [A] -1  

a2 can be estimated by (1) 

s2
N 
1 

= — El (Ytt (e) — YDt )
2 

in which e is the estimate of the parameters. 

LINEAR STRUCTURE ON A FLEXIBLE FOUNDATION 

The effects of ground-structure interaction should theoretically be 
modeled by a system of integro-differential equations (8). The assumption 
of constant coefficients to represent this phenomenon, rather than 
frequency dependent coefficients yield simpler expressions for the 
equations of motion. Furthermore, the results are not greatly affected if 
the coefficients are picked judiciously, that is near the first resonant 
frequency of the coupled system (9). 

The interaction equation for a single story building may be written in 
the convenient form (9). 

[M] {X} + [C] {X} + [K] [13] 
ix} = f  in which (fig. 1) 
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m is the top mass, mb, the base mass, I the sum of the centroidal moments 
of inertia of the two masses and h is the building height. w is the 
undamped circular resonant frequency of the structure on a rigid foundation 
and is the associated damping ratio. Al, B1, A2  and 

u
B2  are the inter- 

action coefficients which depend on the soil medium. is the free field 
ground acceleration, ub  the horizontal displacement of the base and 4) is 
its rotation. u is the relative displacement of the top mass to the bottom 
mass. Particular mode shapes are given in fig. 2, 

This formulation was based on results of a rigid circular plate on an 
elastic half-space (2) which were assumed to hold for rectangular foundations. 
The three matrices are symmetric with all the coupling terms located in the 
mass matrix. Coupling terms in the ground interaction have been neglected(8). 

The total horizontal acceleration measured at the top mass is 

g 
thus for u independent of the parameters the quantities needed in Eqns. 
[8 and 9] g  can be obtained by differentiating the equations of motion Eqn. 
[13] with respect to the parameter and interchanging the order of differ- 
entiation (1) 

fax 
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Thus, the same system of equations hold, only the forcing function 
changes, The identification procedure is now complete. First initial 
estimates of the parameters are obtained through knowledge of the structure 
and the ground characteristics. With these initial estimates a corresponding 
motion may be generated from Eqns.[13-18] utilizing the observed ground 
acceleration. 

The objective junction, Eqn. [5] is then evaluated and compared to the 
convergence criterion. If this is satisfied the variance-covariance matrix 
of the estimates is obtained from Eqns. [10], [11] and [12]. If not, a new 
correction vector is calculated from Eqns. [7], [8], [9], [19] and [20]. 

For the linear system with constant coefficients the response can be 
calculated analytically in terms of the parameters (1). The method is 
applicable to nonlinear systems also as shown in the following section . 

NONLINEAR STRUCTURE ON A RIGID FOUNDATION 

A number of nonlinear models have been proposed to model the behavior 
of a structure during earthquake loading. For stiff compact structure, 
Coulomb damping was considered (4). In the case of large stresses, some 
type of plastic yielding is appropriate (3). 

It has experimentally been observed that frequency and damping are 
nonlinear with amplitude (7). When the base motion and rotation are neg-
lected in Eqn. [13] and nonlinear effects are added, a mathematical model 
having these characteristics is 

m u + c (l+yu2) u + k(l+pu2) u = - m 110, [21] 
For a softening spring, p is negative. Parametric differentiation yields 
k-scalar equations 

y = u .;lo + u + 114: [19] 
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D;1 2 3u 2 3u am
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[22] 

This model has frequency and damping ratio which depend on the 
amplitude of the motion. It is not suggested that this is the model that 
represents behavior of actual structures. Rather, this serves as a nonlinear 
model for which the identification method is applied. 

NUMERICAL EXAMPLES 

The motions and partial derivatives satisfy ordinary differential 
equations. A Gill modification of the fourth order Runge-Kutta numerical 
integration scheme is used to solve these equations. This is subroutine 
RKGS of the IBM Scientific Subroutine Package. With initial conditions this 
method will work for cases in which the time step changes and will reduce 
it automatically if the round-off errors become too large. 

Adcti.ti_onat Paitame-teA4 

Before proceeding to the examples, a number of additional parameters 
have been added. First it is possible that the accelerogram has a d.c. 
offset, or a constant level in the results. This parameter,Ksis added to the 
others, thus giving errors with a mean of zero. 

Initial conditions of the motion and its derivatives may be taken from 
the data, but, these are subject to error, and are also considered as 
additional parameters. The initial acceleration, u is assumed to be inde-
pendent of the parameters except for these initial1  conditions and the 
constant offset. Thus 

au. Dub acpi  

Bu = i = 1 [23] 
0 • Bubo 40 
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All other initial sensitivities are zero. 
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" 1 nLtAxi,e E6ViriateiSH  

The identification scheme presented here is used to verify the 
engineer's estimates or to obtain better estimates of the parameters. The 
initial estimates are critical for convergence. The mass, base mass, total 
mass moment of inertia, and building height can be estimated from structural 
drawings. 

The damping, nonlinear terms, and constant offset are initially 
assumed small , as are the initial conditions for motion beginning before 
the earthquake acceleration reaches the structure. The frequency can be 
obtained from structural considerations. Initial estimates for the inter-
action coefficients Al  and Bimay be obtained from static loading.A2  and B2 
are initially set equal to zero. 

"Rigid Foundation" 

, 
An acceleration spectral density of .75 (ft/sec2 )

2 
 with a cutoff 

frequency of 2 hz was used to simulate the ground acceleration. The standard 
deviation of the resultant motion is 1.17 ft/sect  compared to a theoretical 
value of 1,22 ft/sec2  . 

The parameters of the simulated model, initial estimates, final pa-
rameters, and associated variances are given in Table 1, for the case of 
"perfect" data and "corrupt" data. Gaussian errors with a mean equal to 
zero and a standard deviation of .1 ft/sec2  was used to corrupt the data. 
The best fit standard error is .1006 ft/sec2  . Sixty four points 
representing eight seconds of data were fit until the variance of the 
errors changed by less than .000001. The roof mass is nondimensionalized 
to a value of one and considered as known. As shown in the Table, the 
parameter are close to the correct values and have small variance for the 
case of "perfect" data. For measuring equipment with relatively large 
error characteristics, however, the nonlinear parameter are not well esti-
mated. A five second time record of the data (*) and best fit (-) are 
shown in fig. 3 along with the simulated ground acceleration (---). 

"Ftex,i.b.te Foundation" 

The parameters in the soil-structure interaction identification 
example correspond to the same structure on a soil with a density of 
125 lb/ft3 and a shear wave velocity of 300 ft/sec. Poisson's ratio of the 
soil is zero (9). The structure has a fixed-base undamped natural frequency 
of 1 hz and a damping ratio equal to .01. 

The attempt to determine the parametezfrom observation of the roof 
acceleration only failed. The relative, base and rocking motions contained 
high frequencies in the response. The total roof acceleration did not. For 
the parameters shown in Table 2, the eigenvalues and eigenvectors of the 
system were calculated. Although the modes were not exactly in phase, they 
were very close to being normal modes. These approximate normal modes are 
shown in fig. 2, together with the associated eigenvalues. Although there 
are non-zero mode shapes for the two higher eigenvalues, these have large 
damping constants and have components which are 180° out of phase. Thus 
when these are added, as in the case of total horizontal motion, they 
cancel each other. For the case in which all the acceleration components 
are observed, the parameters may be estimated and are given in Table 2. 
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"DZ6cwssion oi Nummizat ReActetz" 

The mode shapes of fig. 2 help to explain the success of an equivalent 
one-degree-of-freedom model of the structure (10). The frequency of the 
first eigenvalue is smaller and the damping is larger than the corresponding 
structure on a rigid foundation. The large eigenvalues have large decay 
characteristics associated with them. Furthermore, if only the total roof 
acceleration is observed,the motions due to these higher modes cancel each 
other. 

Displacement, velocity, or relative displacement or relative velocity 
records can also be used for the identification of the parameters, but are 
not considered here. For tall structures, and in the case of vertical 
accelerations, each of the floor response accelerations shauldbe observed 
for proper identification. Only a set of time histories is required, however, 
for estimation, unlike frequency domain methods. 

The parameters are as good as the postulated model. Unfortunately, it 
is difficult to evaluate the adequacy of the model. Approximate variance 
of the estimate is given, however. For larger time series a sequential 
scheme may be more efficient than the one presented here. In particular, 
invariant imbedding should be considered (1). 

CONCLUSION 

A method is developed to identify structural and soil-structure 
parameters of a one story structure during an earthquake. It is based on 
observed free-field ground acceleration and acceleration of the roof. 
Approximate variances of the final estimates are obtained. The method deals 
directly with the system of differential equations and not with the solution\ 
Thus it is applicable to nonlinear systems as well as to taller buildings 
in which the system is larger, or to situations in which there is vertical 
ground acceleration as well. 

It was found that nonlinear parameters of a particular postulated 
model can be obtained from total roof acceleration for equipment with 
adequate error characteristics. For flexible ground, however, more data was 
required. When the base and rocking acceleration were also observed the 
parameters best describing the response can be estimated for this case. 
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TABLE 2 FLEXIBLE FOUNDATION ("Perfect data") 
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Initial Estimate 
"Perfect" 

Estimate Variance 
"Corrupt" (a = .1) 
Estimate Variance 
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FIG. 1 SINGLE STORY BUILDING ON A FLEXIBLE 
FOUNDATION 
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